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Abstract

The relativen-hexane cracking activity of Brgnsted acid sites in H-[Al]-ZSM-5, H-[Fe]-ZSM-5, and H-[Al,Fe]-ZSM-5 zeolites has been
investigated as a function of temperature, Cs-exchange level, and aging. Similar to H-[Al]-ZSM-5, acid sites in H-[Fe]-ZSM-5 are homo-
geneous. Per Brgnsted acid site the reaction rate constant over H-[Fe]-ZSM-5 was found to be 15% of that of H-[Al]-ZSM-5. The acid
sites in H-[Fe,Al]-ZSM-5 show inhomogeneity as expected for the coexistence of strong Al-based acid sites and weaker Fe-based acid sites.
In Cs-exchanged materials, an equilibrium relationship has been found for the distribution of Cs between the two different Brgnsted acid
sites. Using equilibrium constants 6.6 and 75, the activity-decreasing effect of replacing protons Witm€san be described both for
H-[Fe,Al]-ZSM-5 and for mildly steamed H-[Al]-ZSM-5, respectively. FTIR results also indicated preferred Cs poisoning on the more active
acidic sites. The peaks representing the stronger and weaker acid sites in H-[Fe,Al]-ZSM-5 are not resolved in either FTIR or temperature-
programmed ammonia desorption. The aging of H—Fe sites appears to influence that of H-Al sites in [Fe,Al]-ZSM-5.
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1. Introduction Al sites have equal activity, and thus equal acid strength.
This can be deduced from (1) the linear decline in activity

leum and petrochemical industry as acidic catalysts [1-4] of in activity as protons are replaced by*Cions via ion ex-
which H-[Al]-ZSM-5 having the MFI structure has been an change [5,8].
outstanding representative with unique shape selectivity [5]. The Bregnsted acid strength and catalytic activity of
The concentration of Brgnsted acid sites in H-[Al]-ZSM-5 H-MFI zeolites isomorphously substituted by trivalent el-
is determined by the content of framework Al, as one hydro- ements have attracted increasing academic and industrial
gen atom per Al balances the negative charge generated bynterest [9—-15]. The Brgnsted acid strength appears to de-
an ARt jon substituting for a Sit ion in the framework. crease in the order H-[Al], [Ga], [Fe], [B]-ZSM-5 based
These sites are denoted as Al-Brgnsted acid sites or H-Alon the increasing OH-stretching frequency in FTIR of the
hereafter. For a large variety of reactions the catalytic ac- acidic Si-OH-M groups, decreasing peak temperature in
tivity correlates linearly with the concentration of Brgnsted TPAD (temperature-programmed ammonia desorption) [9]
acid sites. For example the rate constani-dfexane crack-  and as predicted by a recent density functional study of
ing was found to be strictly proportional to the number of isomorphous substitution [14]. However, arguments [12] ex-
acid sites [6,7]. In carefully prepared H-[Al]-ZSM-5 all the st that neither the hydroxyl-stretching frequency nor the
TPAD peak temperature alone could justify the ranking
R e— , of relative acid strength. The catalytic activity of H-[B]-
Ef’;;?fgggfgg;ﬁ;?so& @seas.upenn.edu (D.H, Olson), ZSM-5 for hexane cracking may be solely due to the smalll

1 Current address: Atofina Chemicals, Inc., 900 First Ave., King of Prus- amount of Al impurity [10]. H-[Fe]-ZSM-5, in particular,
sia, PA 19406, USA. may be of interest for catalysis requiring high selectivity, in-
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cluding olefin oligomerization [16], de-NQreactions [17], ther heated in flowing dry air at 50C for 4 h (ramped
and benzylation of benzene [15]. The differences betweenup from 300°C at 3°C/min to minimize the loss of frame-
H-[Fe]-ZSM-5 and H-[Al]-ZSM-5 in Si-OH-M-stretching  work Fe). The typical flow rate for Nor air is 100 crd/min.
frequency (3630 and 3610 crh, respectively) and in TPAD  The calcined zeolites were ammonium-exchanged two times
peak temperature~( 300 and 360C, respectively) have  with 1.0 M NH4ClI solution by stirring at room tempera-
been found to be considerable [9]. H-[Fe]-ZSM-5 appears ture with the pH of the slurry adjusted to 7.3 by addition of
to have much lower hexane cracking activity than H-[Al]l- NH4OH solution. The product was then heated in deionized
ZSM-5 since Brgnsted acid sites associated with framework water at 80-90C for 1 h to remove physisorbed ammonia.
Fe, noted as Fe-Bransted acid sites or H—Fe hereatfter, are reH-ferrosilicates were obtained by heating INférrosilicates
ported to have no measurable activity, and that the observedat 500°C for 1 h under flowing M. The samples’ off-white
low activity in H-[Fe]-ZSM-5 may be due to Al impuri-  color indicated that most Fe remained in the framework.
ties [12]. Rapid aging of the-hexane cracking activity of Then-hexane sorption capacities for the three H-ZSM-5
H-[Fe]-ZSM-5 also hampered the earlier study [12]. So far materials, measured at 93 and 90 Torm-hexane partial
there has been a lack of quantification of cracking activity of pressure, are all close to 100 pigg which further confirmed
H-[Fe]-ZSM-5 and examination of its acid strength homo- their high crystallinity.
geneity. In a typical preparation of a Cs-exchanged sample, 2 g

In this paper we investigate, employing hexane crack- of H-[Fe,All-ZSM-5 or H-[Fe]-ZSM-5 in 100 ml of wa-
ing and Cs-poisoning tests, the relative activity of H-[Al]- ter was contacted with a stoichiometric volume of 0.1 M
ZSM-5, H-[Fe]-ZSM-5, and H-[Al,Fe]-ZSM-5 zeolites and CsOH solution with stirring for 1 h. The productis a partially
examine their acid site homogeneity. The cracking activity Cs-exchanged G#l1 _ -[Fe,Al]-ZSM-5 or CsH1 _ ,-[Fe]-
is measured as a function of temperature and Cs-exchang&SM-5, wherex denotes the Cs-exchange level (in molar
level. The equilibrium distribution of Cs ions at the differ- fraction).
ent types of T-sites is described and quantified and related to
their relative cracking activity. The aging durimghexane 2.2. Methods
cracking is also compared.

2.2.1. n-Hexane sorption
Adsorption measurements were made using a computer-

2. Experimental methods controlled thermogravimetric balance consisting of a TA51
thermobalance and associated TA-2000/PC control system.
2.1. Materials The partial pressure af-hexane was controlled by blending

a dry N; flow and a flow of ¢ bubbling throughi-hexane at
[Al]l-ZSM-5 was prepared according to the method of Ar- ambient temperature and then passing through a condenser
gauer and Landolt [18]. at 18°C. The 1 atm, mixed flow through the electrobal-
[Fe]-ZzSM-5 was synthesized as described elsewhere [16],ance system was controlled via Macintosh-based LabView
using Cab—O-Sil as the silica source to minimize Al im- control software, Kinetic Systems Interface, mass flow con-
purity. The product is a white crystalline powder shown trollers, and Eurotherm temperature controller.
by X-ray diffraction to be of the MFI structure type and
of high purity. This ferrosilicate contains 85 ppm, i.e., 2.2.2. TPAD
0.003 mmolg, of Al impurity measured by elemental analy- A combination of thermogravimetric analysis (TGA)
sis. and TPAD, based on a method described by Kerr and
[Fe,All-ZSM-5 was synthesized as follows: 2.50 g Chester [19], was used to determine the temperatures and
Fe(NG)3 - 9H20 and 2.07 g Al(SOy)3 - 18H,0 were dis- quantities of ammonia desorption and weight loss in helium
solved in 33.3 g of deionized water, and 5.33 g concentratedflowing at 100 cm/min with a heating rate of 10C/min.
H2SOs was added dropwise with stirring. Then the salt so- A Metrohm titration system (including a 614 Impulsomat, a
lution was mixed with a solution of 8.00 g of tetrapropylam- 632 pH meter, and a 655 Dosimat) connected to a DuPont
monium bromide dissolved in 13.33 g of deionized water. 951 TGA was used for this purpose. Heating and data
Next, a solution of 66.66 g sodium silicate (PQ N-Clear) di- recording (including time, temperature, weight, and titrant
luted in 66.66 g deionized water was added to the mixture volume) are controlled by Macintosh-based LabView soft-
solution with rigorous stirring, forming a gel. Finally the gel ware.
was sealed in a 300 ml Parr autoclave equipped with a stir-  Isopropylamine TPD-TGA measurements were perfor-
rer and heated to 17C for 3 days. The product is a white, med as described elsewhere [12].
high-purity, crystalline powder having the MFI structure as
indicated by XRD. 2.2.3. n-C6 cracking test
The as-synthesized ferrosilicates were calcined in flow-  rn-Hexane cracking tests were performed similar todhe
ing dry N at 500°C (heated from 25 to 500C at a ramping test developed at Mobil [6,20]. In a typical test, a H-ZSM-5
rate of 3°C/min) for 8 h, cooled to 300C, and then fur- sample (pressed and sieved to 14- to 30-mesh particles to
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improve diffusion) was activated in a tube reactor at 338 0.004 :' -

under dry N and then exposed to a stream of darrying
10 Torr ofn-hexane vapor. The partial pressure:dfiexane

was controlled by blending a dryJ2Nlow and a flow of ¥ @ 0.003
bubbling throughk-hexane in an ice bath with each flowrate &

set by a mass flow controller. The stream exiting the reac- §

tor was automatically sampled every 5 min by a GC, with a & 0-002[
J & W Scientific DB-1 capillary column isothermal at 80. 2
Suitable sample amount and flow rate 100 cn¥/min) =

were chosen so that the conversion was about 10% or Iess% 0.0011]
Cracking activity was evaluated by determining the first- [
order rate constant of the reactian(s™1),

d 150 250 350 450 550
k=fxInl—g)x —, (1) Temperature (°C)
(m x 60)
Fig. 1. The TPAD derivative plots of Niidesorption rate versus tempera-

wheref is the flow rate (crd/min), ¢ is the conversion frac-  ture for H-[Al]-, H-[Fe]-, and H-[Fe,All-ZSM-5.
tion, andd andm are the bulk density (0.55/gm?) and the
mass of catalyst particles, respectively [6,7]. 3. Resultsand discussion

For tests on Fe-containing ZSM-5, thehexangN> flow
was manually turned on shortly before each sampling and 3.1. TPAD measurements

turned off immediately afterward so as to avoid unwanted
aging during a GC run. Our experimental setup allows rapid The typical TPAD curves, the derivative plots of NH

dz}g corl]lectlon with mterv:tl;oas short as 39 s ano! t.h-us en('jdesorption rate as a function of temperature, for the three
abling the measurement of 30 s on stream time activities andy ;| ;e ojites are shown in Fig. 1. The desorption of NH

also the recording of the aging process. occurred at temperatures between 200 and®&0Qvhich is
characteristic for chemisorbed NHThe lack of any signifi-
224 FTIR cant peak between 100 and Z@indicates that the samples

Catalysts were tested in the mid-infrared range (MIR), are free of physisorbed NfHTherefore, the total amounts of
using a Nicolet Magna 550 spectrometer equipped with a desorbed NH can be assigned to H-Al and H-Fe Brgnsted
vacuum transmission (T) cell from CIC Photonics. Self- acid sites. The concentrations of framework Al, Fe, and Fe
supporting sample wafers were fabricated and placed intoplus Al-based acid sites are 0.45, 0.35, and 0.48 ryjigiol
a sample holder inside the water-cooled T cell. The sam- for H-[Al], H-[Fe], and H-[Fe,Al]-ZSM-5, respectively (Ta-
ple holder has CaFwindows and is attached to an oil-free ble 1).
high vacuum pump working at 10~ Pa. The samples were The peak temperature of a TPAD curve is qualitatively in-
dehydrated at 400C under vacuum and IR measurements dicative of the acid strength. The values of 360 and ¥4
were done at room temperature. Further details are describedor H-[Al]- and H-[Fe]-ZSM-5, respectively, agree with ear-

elsewhere [21]. lier published data [9]. H-[Fe,Al]-ZSM-5 showed a broad
Table 1
Summary of the three H-ZSM-5 samples
H-[Al]-ZSM-5 H-[Fe]-ZSM-5 H-[Fe,All-ZSM-5
White Off white Off white
n-Hexane sorption (mg) 104 95 102
Acid content (mmolg)? 0.45 (0.43f 0.35*(0.33f (0.003° 0.48 (0.46)
TPAD peak temperaturé C) 360 304 337
TPAD peakwidth {C) 119 117 147
Si—OH-M-stretching frequency (cnt) 3609 3630 3613
Si—OH-M bandwidth (crml) 30 30 40
k(Y 3.1 0.39(0.02)4 1.9
k9 (g/(mmol s)) 53&C 6.9 1.6 4.0
Ea (k¥mol) 121 108 110

@ From TPAD measurements.

b From isopropylamine TPD TGA measurements.

¢ Alimpurity level.

d The calculated cracking activity due to Al impurity.
€ The contribution from Al impurity is excluded.
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single peak at- 337°C and spans the desorption range of 27

the other two materials. This is consistent with coexistence 1

of Al- and Fe-Brgnsted acid sites that are unresolved by AH-Al

TPAD. Hence observation of one TPAD peak is not suffi- 01 O H-FeAl

cient to assess the homogeneity of acid sites. x 1 oH-Fe
Sample preparations were carried out carefully so as to £

minimize formation of Lewis acid sites. Isopropylamine -2

TPD-TGA, a technique developed by Gorte and co-work- 3

ers [12], was employed to determine Brgnsted acid site con-

tent via monitoring the decomposition of isopropylamine, -4 T T |

adsorbed on Brgnsted acid sites, into propene and ammo- 0.0012 0.0013 0.0014 0.0015

nia. Values for the three H-form zeolites are very close to

those from TPAD (Table 1). 1T (1/K)

Fig. 2. The Arrhenius plots for H-[Al]-, H-[Fe]-, and H-[Fe,Al]-ZSM-5.
3.2. Cracking activity

. . in detail later. From Arrhenius plots, shown in Fig. 2, activa-
The hexane cracking activities of the three H-ZSM-5 ma- 45, energies of 121, 108, and 110/kdol were extracted
terials at 538C are listed in Table 1. The (first-order o pall-, H-[Fe]- and I,—I-[Fe Al-ZSM-5, respectively.

rate constant, 3") is related to the unit weight of catalyst The activation energy for H-[Al]-ZSM-5+ 121 kJmol)
andk® (normalized rate constant/@nmols)) is the activ- is close to that previously measured for H-[Al-ZSM-5

ity per Brtzﬁngtegl acid site obtained by normalizingy the (~ 125 k¥mol) [5], while those for H-[Fe] and H-[Fe,Al]-
Bransted acid glte content. At 538, the H-Fe crackingac- 7.5 are slightly lower. The obtained activation energies
tivity per site, kg (1.0 g/(mmols)) of H-[Fe]-ZSM-5, after  5¢ essentially equal within the experimental error, although
excluding the contribution from Ag impurity¢ 3 umo/g), a higher activation energy might be expected for the weaker
is 15% of the H-Al site activityk, (6.9 g/(mmols)). At acid, H-[Fe]-ZSM-5. Note that a reduced activation energy
427°C, kg, was found to be~ 20% of k3. The hexane  for H-[Fe]-ZSM-5 may result from (i) a difference in heat
cracking activity of H—Al measured at 538 is consistent  of 4-hexane adsorption and (ii) a larger reduction in the rate
with that reported earlier [8]. However, the activity of H-Fe  constants measured at higher temperatures due to faster ag-
is significantly higher than previously published [12]. Inthat jng. The true activation energies might reflect the differences
study, the activity of H-[Fe]-ZSM-5 at 427C, reported as  in acid strength between H-[Al]- and H-[Fe]-ZSM-5. Such

turnover frequency (i.e., molecules reacted per Brgnsted acidan issue would need further investigation and is beyond the
site per second), was merely 4% that of H-[Al]-ZSM-5 and  scope of this study.

was attributed to the 10 umy@ Al impurity. These authors

could not accurately determine the activity of H-[Fe]-ZSM-5 3 4 Experimentswith Cs-exchanged samples

at477°C due to rapid aging. In this study the cracking activ-

ity of H-[Fe]-ZSM-5 was measured over a wide temperature  The measured Cs content of partially Cs-exchanged

range, as a function of Cs poisoning (addressed later), a”dH-[Fe,AI]-ZSM-S samples is shown in Fig. 3 as a plot ver-
furthermore as a function of aging time (addressed later), in

an attempt to better quantify the cracking activity of H—Fe. 05 1

The activity of H-[Fe,Al]-ZSM-5 per Brgnsted acid site,
k2, = 4.0 g/(mmols), is equal exactly to the averagepf 04
and kgl. This agrees excellently with the 1:1 ratio of H-Fe .
and H—Al in this catalyst, assuming that the H-Fe and H-Al %°
sites in H-[Fe,Al]-ZSM-5 have the same activity as the cor- é 0.3
responding sites in H-[Fe]- and H-[Al]-ZSM-5, respectively. <
‘s 0.2
>
3.3. Activation energy g
]
« 0.1
. o
Hexane cracking rate constants were measured over the
temperature range 423-538. For H-[Al]-ZSM-5 the rate 0.0 T T T T J
constants at various temperatures were measured on one 0.0 0.1 0.2 0.3 0.4 0.5

sample and were reproducible since there was no detectable
aging, whereas for H-[Fe]- and H-[Fe,Al]-ZSM-5 each tem-
perature point (rate constant) was measured on a fresh, actifig. 3. Correlation of the measured and target Cs-exchange levels for a se-
vated sample to minimize aging effects. Aging is discussed ries of CsHj _ .-[Fe,All-ZSM-5 materials.

Target Cs level (mmol/g)
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Fig. 4. The effect of Cs-exchange level on théexane cracking activity of Fig. 6. The Cs-poisoning test on steamed H-[Al]-ZSM-5: the experimental
H-[Fe]-ZSM-5 at 538 C. data (circles) adapted from Refs. [5,8] and the calculat€xs curve (solid
line) using an equilibrium constant of 7be andkn are the activity of an

enhanced and a normal acid sites, respectively. Here the cracking activity
sus the targeted Cs-exchange level. The excellent agreement reported as the so-calledvalue, the rate constant relative to that of a

between the measurements and the targets (stofe99) standard Si@/Al,03 cracking catalyst wittt = 0.016 s,
confirmed the success of the quantitative exchange. Similar
results were obtained for partially Cs-exchanged H-[Fe]- a small amount (4%) of very strong, highly active acid sites

ZSM-5. (75 times compared to normal acid sites) was present that
The hexane cracking activity of H-[Fe]-ZSM-5 at 538, was selectively poisoned by addition of a small amount of Cs
as a function of Cs-exchange level, noted&ss plot here- ions. Consequently a dramatic decrease in cracking activity

after, is displayed in Fig. 4. As anticipated, the linear decline occurs as thé-Cs plot in Fig. 6 demonstrates (adapted from
in k occurs as H-Fe sites are progressively replaced (poi-Ref. [8]). In H-[Fe,Al]-ZSM-5, the coexistence of strong
soned) by nonacidic Cs—Fe sites, similar to the case of H-Al and weaker H—Fe sites gives rise to inhomogeneity.
H-[Al]-ZSM-5 [5]. Hence, these data indicate that the Brgn- We further examined the-Cs plot of H-[Fe,Al]-ZSM-5
sted acid sites in H-[Fe]-ZSM-5 are homogeneous, as theyin effort to understand the nonlinearity. With the assumption
are in carefully prepared H-[Al]-ZSM-5. that Cs poisoning does not affect the cracking activity per
In contrast to H-[Fe]- and H-[Al]-ZSM-5, the Cs-poison- site of the remaining Brgnsted acid sites, the calculated bulk
ing test at 538C on H-[Fe,Al]-ZSM-5 revealed a nonlinear  activity, k¢, follows the expression,
decline in cracking activity with progressive Cs poisoning,
as shown in Fig. 5. This resembles the findings of Mobil re- KE=[H-AI] x kg, + [H-Fe] x kte (2)
searchers for mildly steamed H-[Al]-ZSM-5 [5,8], and indi- where [H-Fe] and [H-Al] are the concentrations of the cor-
cates that the Brgnsted acid sites in H-[Fe,Al]-ZSM-5 are not responding Brgnsted acid sites. In the first extreme case, if
homogeneous. In the case of mildly steamed H-[Al]-ZSM-5, Cs ions poison H-Al and H-Fe sites nonselectively, a simple
linear k-Cs curve whose slope equald(+ k2,)/2 would
®  Experimental occur, as shown by the dashed straight line in Fig. 5. In a sec-
2 — K=,/ k%, =66 ond extreme case, when Cs ions selectively poison H—Al first
XX X x5 —B- =] and do not poison H-Fe until after the exhaustion of H-Al,
X X K=0 a k-Cs curve composed of two lines (dotted lines, Fig. 5)
151 &g X === K=infinity whose slopes ar?; andk2,, respectively, would occur. In
& the third extreme case that is opposite to second, if Cs is to-
tally selective for H-Fe, two lines in reverse order compared
to the second case would form the shaded kir@s curve.
None of those fit the experimental data points. Hence, an in-
termediate case must be considered where iG8s poison
H—Fe and H—AI sites based on an equilibrium that involves
two types of Cs sites, Cs—Fe and Cs—Al, and two correspond-
ing types of Brgnsted acid sites, H-Fe and H-Al:

0 0.1 0.2 0.3 0.4 0.5 Cs—-Fet+ H-Al «+» Cs—Al+ H-Fe 3)
Cs (mmol/g)

0.5 1

The equilibrium constani, can then be defined as

Fig. 5. The effect of Cs exchange on thehexane cracking activity of K = [Cs—AI][H—Fe]/[Cs—Fe][H—AI], 4)
H-[Fe,Al]l-ZSM-5: the experimental date®]), and the calculatek-Cs

curves based on the proposed equilibrium (Eq. (3)) using equilibrium con- Where [Cs—Al] and [Cs—Fe] are the concentrations of the
stant 6.6 (solid line), O (shaded line), 1 (dashed line), an(totted line). corresponding Cs sites. The concentrations are correlated to
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each other as follows, our model and confirms that the distribution of Cs and H

ions between two different types of Brgnsted acid sites is
[Cs-Al] + [Cs-Fe]=[Cs, () governed by an equilibrium where the equilibrium constant
[Cs—Al] + [H-Al] =[H-Al]o, (6) is equal to the ratio of the two cracking rate constants.
[Cs—FeH- [H-Fe]= [H-Fe), (7)

where [Cs] is the total Cs content, and [H-#Adnd [H-Fe} 3.5. FTIR measurements

are the known original concentrations of the corresponding
acid sites. For a given Cs-poisoned sampleX’ifs known, IR spectroscopy was employed to characterize the Brgn-
the four unknown concentrations in Eg. (4) can be mathe- gted acid sites in H-[Al]-, H-[Fe]-, and H-[Fe Al]-ZSM-5
matically'determi'ned by combining Eqs..(4)—(7), and then g well as CsssHo.as-[Fe,All-ZSM-5, a 55% Cs-exchanged
the cracking activity can be calculated using Eq. (2). H-[Fe,Al]-ZSM-5. Spectra are displayed in Fig. 7. The Si—
This equilibrium includes the above-noted three extreme oH_a| and Si-OH—Fe bands of H-[Al]- and H-[Fe]-ZSM-5
cases: ifk = 1, Cs poisoning is nonselective Af = oo or 0, are at 3609 and 3630 crh, respectively, consistent with re-
(;s poisoning is totally selective for H-Al or H—Fe, respec- ported values [9]. For H-[Fe,Al]-ZSM-5, the Si-OH-M band
tively. appears as a single peak at 3613 épbetween those of
_ In the real H-[Fe,All-ZSM-5 system, howevek > 1, H—Al and H—Fe, and is clearly broader than the latter two.
i.e., Cs poisoning favoring H-Al over H—Fe(,) agroees with the This band is referred to as Si-OH-FeAl hereafter. The rel-
observed results. We found that whén= ky/ kg, = 6.6, ative positions and linewidths of the IR bands of the three

the.calculate<k-Cs plot (solid curve, F.'g' 5) ’.T?ached the ex- materials resemble those of the TPAD peaks. Hence, a sim-
perimental data points very well. This equilibrium constant . ; ) )
ilar conclusion can be drawn: The IR spectra are consis-

is based on the relative cracking activity per Bragnsted site : . S
' . ent with coexistence of Al- and Fe-Brgnsted acid sites in
and hence must also be related to the relative acid strength o
-[Fe,All-ZSM-5 that are unresolved by IR.

these sites, and perhaps their ionic/covalent character. Such In the spectrum of GssHo 4s-[Fe,All-ZSM-5, the Si-

a relationship, involving the equilibrium constant, the rela- .

tive acid strength, and the cracking activity, is in accord with OH-M band shows up asa single pgak a.t 3624%::rAs the

chemical expectations result of Cs exchange, this band shifted in position from the
' Si—-OH-FeAl band toward Si-OH-Fe and is as broad as Si—

To further test the validity of this model of equilibrated Cs T ) -
poisoning based on the relative cracking activity, we took the OH—-FeAl- That agrees qualitatively with our model of equi-
librated Cs poisoning: At 55% Cs-exchange level, the re-

same approach to simulate theCs plot reported on mildly an 9 F - .
steamed H-[Al-ZSM-5 (Fig. 6) [8]. This steamed catalyst M&ining Brgnsted acid sites consist of approxma%élty—AI
contained~ 2.0 acid sites per unit cell (i.e., 0.35 mmig) and%H—Fe, which give rise to an IR band close in position to
4% of which has an enhanced activity 75 times that of a nor- Si-OH-Fe and similar in linewidth to Si-OH-FeAl. The IR
mal acid site. Again by using an equilibrium constant equal spectroscopy in combination with Cs-poisoning method can
to the relative activity, i.e., 75, the calculated curve (solid thus be used to probe the acid homogeneity of H-ZSM-5.
line) fits well the experimental data points (circles) in Fig. 6, Work is underway to establish the quantitative correlation
reproducing the dramatic nonlinear decline of cracking ac- between the Cs-exchange level and the frequency peakwidth
tivity with progressive Cs exchange. This strongly supports of Si-OH-M band.

03624 3613
\ v ¥ H-[Fe]-ZSM5
] 2 = — = Cs,H, ,[Fe,All-ZSM-5
03 : ......... H-[FQ,A]]-ZSM-S

i H-[Al]-ZSM-5
o 4
g =
£ 02
b= ]
=]
@ -
= . \
< 0.1 :

N g

3680 3660 3640 3620 3600 3580 3560
Wave numbers (cm)

Fig. 7. The OH stretching bands in the FTIR spectra of H-[Al]-, H-[Fe]-, H-[Fe,Al]-, angldgBlg 45-[Fe,Al]-ZSM-5. Peaks are maximized to aid visualization
of their relative positions and should not be compared quantitatively.
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________ ——A__A_A in the T-sites could explain this observation but this point is
1 AT AT T MANM ; ) o
speculative. The exact reason for aging of the Fe-containing
0.81 ZSM-5 materials during hexane cracking requires further in-
‘ S 000 R0 vestigation.
2 067 “ee
&
SI 0.4- M 4. Conclusions
x< SO
0.2 Sﬂ:[ég:,iﬁl\zﬁ'sf,’v,ﬁ RN In conclusion, H-[Fe]-ZSM-5 has weak but considerable
’H-[Fe]- M-5 . n-hexane cracking activity that should not be ignored in its
0 T T T ] 12h catalysis applications. The Brgnsted acid sites in H-[Fe]-
0 50 100 150 200 ZSM-5 have homogeneous acidity as do those in carefully
Time (min) prepared H-[Al]-ZSM-5, while [Fe,Al]-ZSM-5, with the co-

presence of two types of Brgnsted acid sites, shows inho-
mogeneous acidity. The two types of copresent acid sites in
H-[Fe,Al]-ZSM-5 are not yet directly distinguished by spec-

troscopic or temperature-programmed desorption methods.
Thus observation of a single acidic feature on a zeolite by

To examine the aging effect at 538, we monitored the & SPectroscopic or a desorption technique is not sufficient to
cracking on each of the three catalysts continuously with conclude its homogeneity. The Cs-poisoning test, combined
time intervals as short as 30 s. Fig. 8 shows the relative With n-hexane cracking or IR spectroscopy, seems to be a
cracking activities (normalized to the corresponding ini- Suitable method to probe the homogeneity of Brgnsted acid
tial activity) of H-[Al]-, H-[Fe]-, and H-[Fe,All-ZSM-5 as sites in H-ZSM-5. In a partially Cs-exchanged H-ZSM-5
a function of aging time. Clearly, H-[Al]-ZSM-5 showed no  having acid ;ite inhomogeneity,.the.distribution of Cs and
sign of aging over the experimental period, while H-[Fe]- H betvyeen different types of acid sites (|n' th dehydratgd
ZSM-5 aged rapidly, consistent with a previous report [12]. State) is found to be governed by an equilibrium wherein
H-[Fe,Al]-ZSM-5 aged at a slower rate than H-[Fe]-ZSM-5, its constant is equal to the relative hexane cracking activi-

as expected. H-[Fe]-ZSM-5 apparently aged via two steps: ties. Such an equilibrium relationship should be applicable
a very rapid step in the first 30 min during which it lost half to other acidic zeolites and/or other alkali cations. The rea-

of its activity and a following slow step in which it contin-  SONS for rapid aging of H-Fe sites during hexane cracking at
uously and steadily aged. After 12 h the activity dropped to Nigh temperature needs further investigation.

10% of its zero time activity. It seems that given longer aging
time H-[Fe]-ZSM-5 would completely lose cracking activ-
ity. H-[Fe,Al]l-ZSM-5, on the other hand, aged relatively

quickly in the first 60 min and then maintained an activity le- .
vel of ~ 70%. The loss of 30% activity in H-[Fe,Al]-ZSM-5 Mukesh Agarwa] from PQ Corporation Resgarch & De-
velopment Center is acknowledged for collection of the IR

is higher than anticipated, since the H—Fe sites accounts for . X
only 13% of the total activity. Therefore, the aging of H-Fe spectra. Oferi Kresnawahjuesa and Prof. Ray Gorte from

appears to influence the aging of H—Al in H-[Fe,All-ZSM-5. _University of_ Pennsylvania are acknowledged for providing
This work and the earlier Mobil studies [5,8] show that Eﬂpr:fﬂiwzg?gr LC;'S T:azu(ﬁgnb?r lt?s&[\)N ?ezlrz(zj)%:)?te-
H-Al acid sites age very slowly during cracking reactions. y 9 ' ytag '

If most of the activity of H-[Fe]-ZSM-5 were due to H-Al informative discussions.
sites present as impurities, as suggested earlier [12], H-[Fe]-
ZSM-5 would not have aged rapidly during cracking. There-
fore, the rapid aging also indicates that the cracking activity
of H-[Fe]-ZSM-5 arises mostly from H—Fe sites instead of
H-Al.

The reason for aging of H-Fe is still unknown. Dur-
ing aging, essentially no change in cracking products (and
their relative amounts) was detected by GC, and the crack-

Fig. 8. The relative cracking activities of H-[Al]-, H-[Fe]-, and H-[Fe,Al]-
ZSM-5 as a function of aging time duringhexane cracking at 53&.

3.6. Aging
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